Nutritional Recommendations for Breast Cancer Treatment: a Review of Persian and Conventional Medicine Resources

Document Type : Review


1 Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran


Background: Breast cancer is the most common neoplastic cancer of women in the world, which counts for approximately a quarter of all cancers.
Methods: In the present review, we aim to evaluate the most common plant and animal products in the food diet recommended for breast cancer treatment in Persian Medicine manuscripts. The findings reveal the retrieved links from the electronic databases between diet, plant and animal products, and cancer through key terms such as plant and animal products; diet and cancer.
Results: The study findings found 17 types of plant and animal products in the food diet. Scientific evidence has investigated that these products can be as anticancer agents through several mechanisms including cytotoxicity against MCF cells, antiproliferative activity, containing phytosterol, polyphenol, β-sitostrol, flavonoid, antioxidants, as well as having anti-inflammatory and anticancer activities.
Conclusion: Nutritional factors play an important factor in the incidence of cancer. In this regard, Persian Medicine mentions nutrition as the first line therapy. Moreover, pharmacological studies are required to help in identification of related molecular mechanisms in the plant and animal products and their possible side effects.


1.         Fisch T, Pury P, Probst N, et al. Variation in survival after diagnosis of breast cancer in Switzerland. Annals of oncology 2005; 16(12): 1882-8.
2.         Lukong KE, Ogunbolude Y, Kamdem JP. Breast cancer in Africa: prevalence, treatment options, herbal medicines, and socioeconomic determinants. Breast cancer research and treatment 2017; 166(2): 351-65.
3.         Bray F, McCarron P, Parkin DM. The changing global patterns of female breast cancer incidence and mortality. Breast cancer research 2004; 6(6): 1-11.
4.         Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018; 68(6): 394-424.
5.         Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biological research 2017; 50(1): 33.
6.         Razis AA, Noor NM. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pacific Journal of cancer prevention 2013; 14(3): 1565-70.
7.         Naja F, Nasreddine L, Awada S, Ahmad RES, Hwalla N. Nutrition in the Prevention of Breast Cancer: A Middle Eastern Perspective. Frontiers in Public Health 2019; 7.
8.         Rock CL, Doyle C, Demark‐Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA: a cancer journal for clinicians 2012; 62(4): 242-74.
9.         de Las Peñas R, Majem M, Perez-Altozano J, et al. SEOM clinical guidelines on nutrition in cancer patients (2018). Clin Transl Oncol 2019; 21(1): 87-93.
10.       Bazzan AJ, Newberg AB, Cho WC, Monti DA. Diet and nutrition in cancer survivorship and palliative care. Evidence-based Complementary and Alternative Medicine 2013; 2013.
11.       Masoudi N, Tabarrai M, Niktabe Z, Dehghan S. Antitumor effects of flaxseed in Iranian traditional medicine and contemporary medicine; a brief review. Research Journal of Pharmacognosy 2018; 5(1): 71-7.
12.       Moeini R, Rezaeizadeh H, Nazem E, Pasalar P, Kamalinejad M, Gorji N. Effect of food taste in cancer forming and progression; viewpoint from Persian medicine. Iranian Journal of Cancer Prevention 2015; 8(3).
13.       Zargaran A, Mehdizadeh A, Zarshenas MM, Mohagheghzadeh A. Avicenna (980–1037 AD). Journal of neurology 2012; 259(2): 389-90.
14.       Razhes MZ. Al-Havi fi Al-Tibb (Continens). Beirut, Lebanon: Dare Ehya al-Toras Institute; 2001.
15.       Avicenna. Qanun Fi al-Teb (Canon of Medicine). Beirut, Lebanon: Dare Ehya al-Toras Institute; 2005.
16.       Nilsson LM, Winkvist A, Esberg A, et al. Dairy products and cancer risk in a Northern Sweden population. Nutrition and Cancer 2020; 72(3): 409-20.
17.       Clinton SK, Giovannucci EL, Hursting SD. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. The Journal of Nutrition 2020; 150(4): 663-71.
18.       Naja F, Nasreddine L, Awada S, El Sayed Ahmad R, Hwalla N. Nutrition in the Prevention of Breast Cancer: A Middle Eastern Perspective. Front Public Health 2019; 7: 316.
19.       Aumeeruddy M, Aumeeruddy-Elalfi Z, Neetoo H, et al. Pharmacological activities, chemical profile, and physicochemical properties of raw and commercial honey. Biocatalysis and Agricultural Biotechnology 2019; 18: 101005.
20.       Sowmya PR-R, Arathi BP, Vijay K, Baskaran V, Lakshminarayana R. Astaxanthin from shrimp efficiently modulates oxidative stress and allied cell death progression in MCF-7 cells treated synergistically with β-carotene and lutein from greens. Food and Chemical Toxicology 2017; 106: 58-69.
21.       Xie L, Bolling BW. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC–MS. Food chemistry 2014; 148: 300-6.
22.       Aghili M. Makhzan-al-advia (Persian) Tehran: Tehran University of Medical Sciences; 2009.
23.       Duangmano S, Sae-Lim P, Suksamrarn A, Domann FE, Patmasiriwat P. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC complementary and alternative medicine 2012; 12: 185.
24.       Wakimoto N, Yin D, O'Kelly J, et al. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer science 2008; 99(9): 1793-7.
25.       Jayaprakasam B, Seeram NP, Nair MG. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 2003; 189(1): 11-6.
26.       Yang L, Wu S, Zhang Q, Liu F, Wu P. 23,24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37). Cancer Letters 2007; 256(2): 267-78.
27.       Dakeng S, Duangmano S, Jiratchariyakul W, U‐Pratya Y, Bögler O, Patmasiriwat P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt‐associated proteins and reduced translocation of galectin‐3‐mediated β‐catenin to the nucleus. Journal of cellular biochemistry 2012; 113(1): 49-60.
28.       Bernard SA, Olayinka OA. Search for a novel antioxidant, anti-inflammatory/analgesic or anti-proliferative drug: Cucurbitacins hold the ace. Journal of Medicinal Plants Research 2010; 4(25): 2821-6.
29.       Soriano-Hernandez AD, Madrigal-Perez DG, Galvan-Salazar HR, et al. The protective effect of peanut, walnut, and almond consumption on the development of breast cancer. Gynecologic and obstetric investigation 2015; 80(2): 89-92.
30.       Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C. Antiproliferative Terpenoids from Almond Hulls (Prunus dulcis): Identification and Structure− Activity Relationships. Journal of Agricultural and Food Chemistry 2006; 54(3): 810-4.
31.       Abdel-Fattah WI, Eid MM, Abd El-Moez SI, Mohamed E, Ali GW. Synthesis of biogenic Ag@Pd Core-shell nanoparticles having anti-cancer/anti-microbial functions. Life sciences 2017; 183: 28-36.
32.       Chen C, Chan HM, Kubow S. Kefir extracts suppress in vitro proliferation of estrogen-dependent human breast cancer cells but not normal mammary epithelial cells. Journal of medicinal food 2007; 10(3): 416-22.
33.       Maeda N, Matsubara K, Yoshida H, Mizushina Y. Anti-cancer effect of spinach glycoglycerolipids as angiogenesis inhibitors based on the selective inhibition of DNA polymerase activity. Mini reviews in medicinal chemistry 2011; 11(1): 32-8.
34.       Maeda N, Hada T, Yoshida H, Mizushina Y. Inhibitory effect on replicative DNA polymerases, human cancer cell proliferation, and in vivo anti-tumor activity by glycolipids from spinach. Current medicinal chemistry 2007; 14(9): 955-67.
35.       Mizushina Y, Hada T, Yoshida H. In vivo antitumor effect of liposomes with sialyl Lewis X including monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach. Oncology reports 2012; 28(3): 821-8.
36.       Kadir EA, Sulaiman SA, Yahya NK, Othman NH. Inhibitory effects of Tualang Honey on experimental breast cancer in rats: a preliminary study. Asian Pacific journal of cancer prevention : APJCP 2013; 14(4): 2249-54.
37.       Fauzi AN, Norazmi MN, Yaacob NS. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2011; 49(4): 871-8.
38.       Yaacob NS, Nengsih A, Norazmi MN. Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. Evidence-based complementary and alternative medicine : eCAM 2013; 2013: 989841.
39.       Erejuwa OO, Sulaiman SA, Wahab MSA. Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules 2014; 19(2): 2497-522.
40.       Amirijavid S, Entezari M, Movafagh A, Hashemi M, Mosavi-Jarahi A, Dehghani H. Apoptotic killing of breast cancer cells by IgYs produced against a small 21 aminoacid epitope of the human TRAIL-2 receptor. Asian Pacific Journal of Cancer Prevention 2016; 17(S3): 293-7.
41.       Amirijavid S, Hashemi M. Detection of anticancer and apoptotic effect of the produced IgYs against the three extracellular domain of human DR5 protein. Iranian Journal of Cancer Prevention 2015; 8(2): 109.
42.       Koronowicz AA, Banks P, Master A, et al. Fatty acids of CLA-enriched egg yolks can induce transcriptional activation of peroxisome proliferator-activated receptors in MCF-7 breast cancer cells. PPAR research 2017; 2017.
43.       El Hasasna H, Saleh A, Al Samri H, et al. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Scientific reports 2016; 6: 21144.
44.       El Hasasna H, Athamneh K, Al Samri H, et al. Rhus coriaria induces senescence and autophagic cell death in breast cancer cells through a mechanism involving p38 and ERK1/2 activation. Scientific reports 2015; 5: 13013.
45.       Ghorbani P, Namvar F, Homayouni-Tabrizi M, Soltani M, Karimi E, Yaghmaei P. Apoptotic efficacy and antiproliferative potential of silver nanoparticles synthesised from aqueous extract of sumac (Rhus coriaria L.). IET nanobiotechnology 2018; 12(5): 600-3.
46.       Woo SM, Kwon SC, Ko SG, Cho SG. Barley grass extract causes apoptosis of cancer cells by increasing intracellular reactive oxygen species production. Biomedical reports 2017; 6(6): 681-5.
47.       Czerwonka A, Kawka K, Cykier K, Lemieszek MK, Rzeski W. Evaluation of anticancer activity of water and juice extracts of young Hordeum vulgare in human cancer cell lines HT-29 and A549. Ann Agric Environ Med 2017; 24(2): 345-9.
48.       Cheng D, Zhang X, Meng M, et al. Inhibitory effect on HT-29 colon cancer cells of a water-soluble polysaccharide obtained from highland barley. International journal of biological macromolecules 2016; 92: 88-95.
49.       Aghili M. Qarabadin-e-Kabir [Great Pharmacopeia] (Lithograph in Persian). Tehran: Mahmoudi Press; 1970.
50.       Cheng S-H, Tseng Y-M, Wu S-H, Tsai S-M, Tsai L-Y. Whey protein concentrate renders MDA-MB-231 cells sensitive to rapamycin by altering cellular redox state and activating GSK3β/mTOR signaling. Scientific reports 2017; 7(1): 1-11.
51.       Xu X, Feng Y, Chen X, Wang Q, Meng T, Liu A. Antitumor effects of seleno-β-lactoglobulin on human breast cancer MCF-7 and MDA-MB-231 cells in vitro. Toxicology in Vitro 2019; 61: 104607.
52.       Ganesan K, Xu B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness 2018; 7(1): 11-33.
53.       Hou D, Yousaf L, Xue Y, et al. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019; 11(6): 1238.
54.       Xie J, Du M, Shen M, Wu T, Lin L. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food chemistry 2019; 270: 243-50.
55.       Gupta N, Srivastava N, Bhagyawant SS. Vicilin—A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One 2018; 13(2): e0191265.
56.       Shariatikia M, Behbahani M, Mohabatkar H. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Molecular biology research communications 2017; 6(2): 57-64.
57.       Mao X, Gu J, Sun Y, et al. Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. International Dairy Journal 2009; 19(11): 703-8.
58.       Vincenzetti S, Amici A, Pucciarelli S, et al. A proteomic study on donkey milk. Biochem Anal Biochem 2012; 1(109): 2161-1009.1000109.
59.       Dong JY, Zhang L, He K, Qin LQ. Dairy consumption and risk of breast cancer: a meta-analysis of prospective cohort studies. Breast cancer research and treatment 2011; 127(1): 23-31.
60.       Gupta N, Bisen PS, Bhagyawant SS. Chickpea lectin inhibits human breast cancer cell proliferation and induces apoptosis through cell cycle arrest. Protein and peptide letters 2018; 25(5): 492-9.
61.       Chen H, Ma HR, Gao YH, et al. Isoflavones extracted from chickpea Cicer arietinum L. sprouts induce mitochondria‐dependent apoptosis in human breast cancer cells. Phytotherapy Research 2015; 29(2): 210-9.
62.       human MLBPApai, anticarcinogenic bccwiibt, Bowman–Birk protease inhibitor. Cancer Lett 85.
63.       Jukanti AK, Gaur PM, Gowda C, Chibbar RN. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition 2012; 108(S1): S11-S26.
64.       Magee PJ, Owusu-Apenten R, McCann MJ, Gill CI, Rowland IR. Chickpea (Cicer arietinum) and Other Plant-Derived Protease Inhibitor Concentrates Inhibit Breast and Prostate Cancer Cell Proliferation In Vitro. Nutrition and Cancer 2012; 64(5): 741-8.
65.       Tian J-L, Liang X, Gao P-Y, et al. Two new alkaloids from Portulaca oleracea and their cytotoxic activities. Journal of Asian natural products research 2014; 16(3): 259-64.
66.       Zhao R, Zhang T, Ma B, Li X. Antitumor activity of Portulaca oleracea L. polysaccharide on HeLa cells through inducing TLR4/NF-κB signaling. Nutrition and cancer 2017; 69(1): 131-9.
67.       Moradi M-T, Gatreh Samani K, Farrokhi E, Rafieian-Kopaei M, Karimi A. The effects of purslane (Portulaca oleracea L.) on serum level of lipids, lipoproteins and paraoxanase 1 (PON1) activity in hypercholesterolemia patients. Life Science Journal-Acta Zhengzhou University Overseas Edition. 2012;9(4):5548-52.
68.       AHMADI KN, Amiri M. Physicochemical Evaluation of Purslane Seed Oil. 2013.
69.       zur Hausen H. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. International journal of cancer 2012; 130(11): 2475-83.
70.       Farvid MS, Cho E, Chen WY, Eliassen AH, Willett WC. Dietary protein sources in early adulthood and breast cancer incidence: prospective cohort study. Bmj 2014; 348: g3437.
71.       Shah A, Ahmad M, Ashwar BA, et al. Effect of γ-irradiation on structure and nutraceutical potential of β-d-glucan from barley (Hordeum vulgare). International journal of biological macromolecules 2015; 72: 1168-75.
72.       Sun Y, Zang Z, Zhong L, et al. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One 2013; 8(5): e63354.
73.       Nile SH, Park SW. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products 2015; 70: 238-44.
74.       Nile SH, Nile AS, Keum Y-S. Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech 2017; 7(1): 76.
75.       Marrelli M, Cristaldi B, Menichini F, Conforti F. Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food and Chemical Toxicology 2015; 86: 16-24.
76.       Shahidi F, Janitha PK, Wanasundara PD. Phenolic antioxidants. Critical Reviews in Food Science and Nutrition 1992; 32(1): 67-103.
77.       Tuama AA, Mohammed AA. Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi Journal of Biological Sciences 2019; 26(3): 600-4.
78.       How FNF, Mohammad A, Ichwan SJA. Biological properties of cucumber (Cucumis sativus L.)extracts = Sifat-sifat biologi ekstrak timun (Cucumis sativus L.). 2014; 2014.
79.       Lee H-N, Shin S-A, Choo G-S, et al. Inhibitory effects of spinach, cabbage, and onion extracts on growth of cancer cells. Journal of the Korean Society of Food Science and Nutrition 2016; 45(5): 671-9.
80.       Shariatikia M, Behbahani M, Mohabatkar H. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Molecular Biology Research Communications 2017; 6(2): 57.
81.       Shahraki S, Shiri F, Heidari Majd M, Dahmardeh S. Anti-cancer study and whey protein complexation of new lanthanum (III) complex with the aim of achieving bioactive anticancer metal-based drugs. Journal of Biomolecular Structure and Dynamics 2019; 37(8): 2072-85.
82.       Jaganathan SK, Mandal SM, Jana SK, Das S, Mandal M. Studies on the phenolic profiling, anti-oxidant and cytotoxic activity of Indian honey: in vitro evaluation. Natural Product Research 2010; 24(14): 1295-306.
83.       Jaini R, Kesaraju P, Johnson JM, Altuntas CZ, Jane-Wit D, Tuohy VK. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nature medicine 2010; 16(7): 799-803.
84.       Roy SS, Mukherjee S, Ballard BR, Das SK. Protection against dimethylbenz [a] anthracene-induced breast cancer in female rats by α-lactalbumin. International journal of cancer and oncology 2016; 3(1): 1.
85.       Jain A, Sharma G, Ghoshal G, et al. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity. International journal of pharmaceutics 2018; 546(1-2): 97-105.
86.       Rani R, Kansal VK. Study on cow ghee versus soybean oil on 7, 12-dimethylbenz (a)-anthracene induced mammary carcinogenesis & expression of cyclooxygenase-2 & peroxisome proliferators activated receptor-γ in rats. The Indian Journal of Medical Research 2011; 133(5): 497.
87.       Orsolić N, Knezević A, Sver L, Terzić S, Hackenberger B, Basić I. Influence of honey bee products on transplantable murine tumours. Veterinary and comparative oncology 2003; 1(4): 216.
88.       Kadir EA, Sulaiman SA, Yahya NK, Othman NH. Inhibitory effects of tualang honey on experimental breast cancer in rats: a preliminary study. Asian Pacific Journal of Cancer Prevention 2013; 14(4): 2249-54.
89.       Kennedy RS, Konok GP, Bounous G, Baruchel S, Lee TD. The use of a whey protein concentrate in the treatment of patients with metastatic carcinoma: a phase I-II clinical study. Anticancer Research 1995; 15(6): 2643-50.